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What is the Complexity of Related 
Elliptic, Parabolic, and Hyperbolic Problems? 

By Arthur G. Werschulz* 

Abstract. Iraub and Wozniakowski have dealt with the complexity of some simple 
partial differential equations. They chose three model problems and showed that the 
parabolic problem considered had significantly lower complexity than the elliptic prob- 
lem, which in turn had significantly lower complexity than the hyperbolic problem con- 
sidered. They asked whether this is true in general. We show that this is not the case 
by proving that if L is a reasonably well-behaved elliptic operator, then the steady- 
state heat equation Lu = f, the heat equation Otu + Lu = f, and the wave equation 
Ottu + Lu = f all have roughly the same worst-case complexity for f in the unit ball of 
a certain Sobolev space of smoothness r. 

1. Introduction. This paper deals with the complexity of "related" elliptic, 
parabolic, and hyperbolic partial differential equations. (In this Introduction we use 
terms such as complexity, minimal error, etc., without definition; they are defined 
rigorously later.) 

Traub and Wozniakowski [9] have dealt with the complexity of three partial 
differential equations. The first problem was the heat equation on a thin rod of 
length ir, with zero boundary data; the initial data was odd of period 2ir, having 
an rth derivative whose L2-norm was bounded by unity. They found that if the 
solution was considered at a fixed time to, then the nth minimal error in the L2- 
norm was e-(n+ )2t? /(n + l)r, and the complexity of finding an e-approximation 
was e((lne-1)1/2) as E -* 0. (The e-notation used here is that of [7]; it may be 
thought of as a two-sided 0-notation.) 

The second problem was Laplace's equation on a square in the (x, y)-plane, the 
length of whose sides was ir. Zero boundary data was prescribed on the west, 
south, and east sides of the square; the boundary data on the north side satisfied 
the same conditions as the initial data in the heat equation above. If the solution 
was considered along a line y = yo (where 0 < yo < ir), then they found the 
nth minimal L2-error to behave asymptotically as e-(n+1)(,-yo)/(n + 1)r, and the 
complexity of finding an e-approximation to be e (ln e-1) as E -O 0. 
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The third problem was the first-order hyperbolic equation 

Au A9u 

At ax 

The initial data had period 2ir and mean value zero, with an rth derivative whose 
L2-norm was bounded by unity. They considered the solution u(., to) on the interval 
[0, ir], for a fixed to > 0. They found the nth minimal L2-error to be (Ln/2j + 1)-, 

and the complexity of finding an e-approximation to be E3(e-1/r) as E -* 0. 
Hence, they found examples of parabolic, elliptic, and hyperbolic problems for 

which the parabolic problem had significantly smaller complexity than the elliptic 
problem, which, in turn, had significantly smaller complexity than the hyperbolic 
problem. They asked [9, p. 149] whether this was true in general, or whether this 
depended on these specially chosen examples. 

In this paper, we show that this phenomenon is not true in general. 
We first note that the behavior noted in [9] is norm-dependent. Traub and 

Wozniakowski showed that the nth minimal error for all three problems became 
e(n-r) as n -x oo, when the error was measured in the Loo (L2) sense, and the 
complexity of finding an e-approximation became e(e-1/r) as E -* 0. However, the 
Loo (L2)-norm is not a natural way to measure the error for the elliptic problem, 
since it gives more importance to the y-direction than it does to the x-direction. 

Another difficulty is that the class of problem elements either played a different 
role or changed when going from one problem to another. The problem elements 
were initial data for the parabolic and hyperbolic problems, while they were bound- 
ary data for the elliptic problem. Moreover, they were odd functions in the parabolic 
and hyperbolic problems, whereas they were functions with zero mean in the ellip- 
tic problem. Hence, the notion of "a class of problem elements with smoothness r" 
changed from problem to problem. 

In this paper, we are interested in the inherent complexity of related elliptic, 
parabolic, and hyperbolic problems. That is, we let L be a reasonably well-behaved 
elliptic operator of order 2m. For a smooth region Q c RN, we will let Hr (Q) denote 
a closed subspace of Hr(Q)-functions satisfying certain boundary conditions (which 
will be specified later). We then consider the elliptic problem Lu = f, the parabolic 
problem 9tu + Lu = f, and the hyperbolic problem 9ttu + Lu = f for all f in the 
unit ball of kr( (). Note that the same operator L appears in all three problems. 
Hence, these problems are related in the same way that the classical Poisson, heat, 
and wave equations are related. Moreover, the problem element f plays the same 
role in all three problems. Errors will be measured in the L2-norm for the elliptic 
problem, and either the L2-norm at a fixed time to or the Loo (L2)-norm for the 
time-dependent problems. 

Our main result is that for the elliptic and parabolic problems and for the 
hyperbolic problem solved over an interval in time, the nth minimal error is 
E3(n-(r+2m)/N) as n -x oo, and the complexity of finding an e-approximation is 
e(e-N/(r+2m)) as E -* 0. For the hyperbolic problem solved at a particular time 
to, the "O" becomes an "O"; moreover, this is (roughly speaking) the strongest 
statement possible, since a fortuitous value of to could make the nth minimal error 
zero for all n. 

It is important to point out that these results are mainly of theoretical interest. 
There are two reasons for this. 
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(i) We assume that the problem element f belongs to H r(Q), and thus satisfies 
some boundary conditions. It is more usual to assume only that f E Hr (Q), i.e., 
that f satisfies no boundary conditions (see, e.g., [4] and [8]). 

(ii) We are mainly interested in the inherent (or intrinsic) complexity of these 
problems, which allows us to consider algorithms that may not be implementable 
in practice. For example, we assume a model of computation permitting infinite- 
precision arithmetic and for which exact information is available; if either of these 
assumptions is weakened, the complexity of these problems might change. In addi- 
tion, we consider algorithms using information that might not be readily available, 
such as the eigenvalues and eigenfunctions of L. 

However, knowing the inherent complexity does provide a benchmark; it tells 
what price the user is paying for using nonoptimal information or nonoptimal al- 
gorithms. In addition, we are able to show that there are finite element methods 
that are nearly optimal, so that if the usual "finite element information" [10] is 
available, these results become useful in practice. 

We now outline the contents of this paper. In Section 2, we define the problems 
to be studied. In Section 3, we recall some terminology and results from [9] about 
optimal algorithms. In Section 4, we compute nth minimal errors for these related 
problems and show that they are roughly the same. In Section 5, these results 
are used to show that the complexity of finding e-approximations is roughly the 
same for all three problems. Finally, we summarize our results and pose some open 
questions in Section 6. 

2. Related Elliptic, Parabolic, and Hyperbolic Problems. In this sec- 
tion, we define the problems to be studied. We use the standard terminology and 
notations found in [8] for multi-indices, Sobolev spaces, etc. 

Given a positive integer N, let Q c R N be a bounded region with C? boundary. 
Consider the formally selfadjoint, uniformly strongly 2mth-order elliptic operator 
L of the form 

(Lv) (x)= , (- 1)'D(a, (x)D:v(x)) 
lal 1i31?~m 

with real-valued functions a,g3 E CO (Q) such that a,g3 = ap,,. We additionally 
assume that 

(2.1) Lv = 0 in Q and 9v = 0 on 9Q (for 0 < j < m- 1) v = 0 in Q, 

where 9,, denotes the outer normal derivative on 9Q. 
To define the space of problem elements, we recall the following result. Let /1, 

232,... denote the eigenvalues (arranged in nondecreasing order) and let Z1,Z2,... 

denote the corresponding L2(Q)-orthonormal eigenfunctions of the problem 

Lzn = 0,nzn in Q, 

Zn = O on&9Q (0<j<m-1). 
Then [1, Theorem 4.6] shows that there is a positive constant c, which is indepen- 
dent of n, such that 

(2.2) On - cn 2m/N as n -x oc, 

and so limn1,oo On = Xc. 
Let r > 0. Following the approach of [2], we now define the space H r(Q) of 

problem elements to be 
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where the norm 1 is defined by 

00 

II!hr = Z Onr/m(f z n)2 = IlLr/ mflL2(2). 
n=1 

(Here and in the rest of this paper, (,.) denotes the L2(0)-inner product.) Using 
elliptic regularity theory (see [8, Theorem 5.6]) and Hilbert space interpolation 
theory (see [3, Chapter III] and [6]), it is easy to see that krr(Q) is a closed subspace 
of the Sobolev space Hr(Q), and that the norm 1 is equivalent to the usual 
Sobolev norm || j l|Hr(Q) on Hr(F). 

We are interested in the complexity of the following elliptic, parabolic, and hy- 
perbolic problems: 

Problem (E). Given f E kr(Q), find u: Q- R such that 

Lu= f in Qf, 

93u=O on &9 (O <j<m-1). 

We define 
SEf := U. 

Note that (2.1) implies that SEf is defined for all f E Hr(F). D 

In the next two problems, we fix a value of T > 0. 
Problem (P). Given f C Hr(Q), find u: Q x [0,T] -+ R such that 

atu+Lu=f inFQx(O,T), 

Q-' u=O onaQ x[O,T] (O<j<m-1), 
u(.,O)=O on Q. 

If we wish the solution for all t G [0, T], we will consider 

Spf :=u. 

If we are interested in the solution at a particular to E [0, T], we will consider 

Sp,tof u(, to). O 

Problem (H). Given f E ftr(q), find u: Q x [0, T] -* R such that 

9ttu+ Lu = f in [ x (O,T), 
a3u = 0 on O2 x [O,T] (O < j < m- 1), 

u(.,O) = atu(.,O) = 0 on Q. 
If we wish the solution for all t E [0, T], we will consider 

SHf := u. 

If we are interested in the solution at a particular to E [0, T], we will consider 

SH,tof u( ,to). 0 

The problems (E), (P), and (H) are said to be related because they all invol 
the same elliptic operator L. Note that if -L is the N-dimensional Laplacia 
then (E) becomes Poisson's equation, while (P) and (H) become the heat and wa 
equations (respectively) with a forcing term. 
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3. Optimal-Error Algorithms and Optimal Information. In this section, 
we introduce some terminology and results from [9] about optimal-error algorithms 
using given information, as well as the selection of optimal information. (See [9] for 
further discussion of these concepts.) 

Let S: Hr(q) -* G be a linear transformation. We call S a solution operator. 
When S is one of SE, Sp,to, or SH,to, we will choose G = L2(0); when S is either 
Sp or SH, we will let G = Loc([0, T], L2( (Q)) under the norm 

IIUIIL.(L2) = ess sup jju(-, t) IL2(Q). 
O<t<T 

We will often refer to the problem for which S is the solution operator as the 
problem S. 

Let E > 0. Our main goal is to find an e-approximation to the problem S. In 
other words, let F denote the unit ball of kr(7). Then for f E F, we wish to 
compute x(f) E G such that 

||Sf - X(f)IIG <E 

In what follows, we will sometimes refer to F as the set of problem elements. 
To find an e-approximation, we must know something about the problem ele- 

ments. We assume that for any f C F, we know only a finite amount of "informa- 
tion" Nf about f, consisting of the values of n linear functionals at f, i.e., 

Nf Vf E. kr () 
An(f) 

Hence, information N of cardinality at most n is a linear operator N: Hr((Q) -> Rn. 
We must now use this information in an algorithm, i.e., a mapping p: Rn -* G. 

The quality of an algorithm p using information N to find an approximate solution 
of the problem S is measured by its (worst-case) error 

e(~p, N, S) = sup ||Sf - (p(Nf) jjG. 
fEF 

Clearly, an algorithm p using information N gives an E-approximation to the prob- 
lem S if and only if e(p, N, S) < F. 

Of course, we wish to use the information N as efficiently as possible. Let the 
radius of information 

r(N,S) = infe((p,N,S) 

be the minimal error among all algorithms using N for the problem S. We seek an 
optimal-error algorithm PN using N, i.e., an algorithm PN using N such that 

e(pN, N, S) = r(N, S). 

(See [9] for an explanation of the term "radius of information," as well as for further 
discussion of optimal-error algorithms.) 

Finally, we are interested in selecting the best information of given cardinality 
for the problem S. Let 

r(n, S) = inf{ r(N, S): N is information of cardinality at most n } 
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denote the nth minimal radius of information for the problem S, so that there is 
no information of cardinality at most n whose radius is less than r(n, S). An infor- 
mation operator Nn of cardinality at most n is said to be nth optimal information 
for the problem S if 

r(Nn, S) = r(n, S). 

Of course, if (pn is an optimal-error algorithm using nth optimal information Nn, 
then 

e(oPn, Nn) < e(p, N) 
for any algorithm p using any information N of cardinality at most n. Such an 
algorithm pn is called an nth minimal-error algorithm for the problem S. 

Remark 3.1. Note that we only consider linear information that is nonadaptive, 
i.e., the linear functional Ai does not depend on the previously computed informa- 
tion. One might also consider adaptive information, in which the linear functional Ai 
depends on the values of A1, . .. , Ai-1. For the problems considered in this paper, 
adaptive and nonadaptive linear information are equally powerful (see [9, Chap- 
ter 2]). In addition, one might consider nonlinear information, in which A1, .. ,n 
are nonlinear functionals. It is known that arbitrary nonlinear information is too 
powerful (see [9, Chapter 7]). However, continuous nonlinear information is no 
more powerful than linear information (see [5]). Ol 

To see an example of nth optimal information and an nth minimal-error algo- 
rithm, suppose that the solution operator S: Hr (q) -+ G has the form 

00 

Sf = oZ,(f,zj)zi Vf G (), 
i=l 

where { zi }? is an orthonormal basis for ftr(Q). Let 

Ai 
a i (i = 1, 2, .. .) 

and suppose that Aij is the jth largest value of { Ai }90 1, i.e., Ai, 
> Ai2 > * > 0 

Then [6, Theorem 6.6.1] immediately gives 

LEMMA 3.1. (i) The nth minimal radius for the problem S is 

r(n, S) = Ain+1 

(ii) The information Nn given by 

[(f,zi1)1 
Nn f= V f EHr(Q) 

[(f, Zin) 
is nth optimal information for the problem S. 

(iii) The algorithm pn given by 
n 

P(Nnf) = Z(f, Zij)Zij Vf E Hr(Q) 
j=j 

is an nth minimal-error algorithm for the problem S. D 

This result will be useful in determining optimal information and minimal-error 
algorithms for the problems (E), (P), and (H). 
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4. Minimal-Error Algorithms for Related Problems. In this section, 
we use Lemma 3.1 to show that the nth minimal errors for the related problems 
are all roughly the same. Moreover, the same type of information is nth optimal 
information for all three problems. We also give nth minimal-error algorithms for 
these problems. 

4.1. Elliptic Problem SE. Since { zj }I'? 1 is an orthonormal basis of eigenfunc- 
tions for L corresponding to the eigenvalues { ,j }I'?1 with 0 < il < ?2 < ..., we 
see that 

oo 

SEf=E (f zZ)zj VfEHr( 2) 
j=j 

(Recall that (,.) denotes the L2(0)-inner product.) Using (2.2) and Lemma 3.1, 
we have 

THEOREM 4. 1. (i) The nth minimal radius of information for the elliptic prob- 
lem SE is 

r(n, SE) = -(r+2m)/(2m) 

so that 

r(n, SE) = E3(n-(r+2m)/N) as n -* oo. 

(ii) The information Nn, given by 

(f,zi) 

(4.1) Nnf= [jVf EJfHr(Q) 
(f,l Zn) 

is nth optimal information for the elliptic problem SE. 
(iii) The algorithm Pn, given by 

n 
(p(Nnf) = Z 1 Zj)Zj Vf H r(q), 

j=l oi 

is an nth minimal-error algorithm for the elliptic problem SE. ? 

Of course, it will usually be difficult to determine the eigenfunctions and eigen- 
values of operators L arising in practice. Since our goal is to show that related 
problems have the same intrinsic complexity, this difficulty does not interfere with 
the aim of this paper. However, consider the finite element method using piecewise 
polynomial n-dimensional subspaces of Hr (q), the degree of the polynomials being 
Fri + 2m - 1. If a quasi-uniform family of triangulations is used, then the results 
of [4], [8], [10] imply that this finite element method has error e9(n- (r+2m)/N) as 
n -* ox. Hence, this finite element method is (to within a constant that is inde- 
pendent of n) an nth minimal-error algorithm for the elliptic problem SE. 

4.2. Parabolic Problems Sp,to and Sp. Using separation of variables, we see that 

1 - e-8jto 
Sp,tof = E o (f,Zj)Zj Vf E Hr(7q). 

j=1 
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Using (2.2), Lemma 3.1, and the techniques of [9, pp. 59-60], we have 

THEOREM 4.2. (i) The nth minimal radius of information for the parabolic 
problem Sp,to at time to is 

r(n, Sp,to) = (1 - e-nn+lto)3-(r+2m)/(2m) 

while the nth minimal radius of information for the parabolic problem Sp over the 
interval [0, T] is 

r(n, Sp) = (q-(r+2m)/(2m 

Hence, 
r(n, Sp,tj) = e(n-(r+2m)/N) as n -* oo, 

and 
r(n, Sp) = e(n-(r+2m)/N) as n -* oo. 

(ii) The information Nn given by (4.1) is nth optimal information for the parabolic 
problems Sp,to and Sp. 

(iii) Let 

4pn(Nnf)(t) = E (f, zj)zj V (f, t) E ftr() x [0 T] X 
j=l 

Then (.n) (tO) is an nth minimal-error algorithm for the parabolic problem Sp,to, 
and (Pn is an nth minimal-error algorithm for the parabolic problem Sp. O 

Once again, the algorithm presented in this theorem will usually be difficult to 
implement in practice. However, the formula for Sp,to may be used to derive shift 
theorems for u and 9u/dt. Following the results in [4, pp. 139 ff.], this means 
that the finite element method is optimal (to within a constant) for the parabolic 
problem. (Note that the techniques in [4] are only applied to the second-order 
problem. However, these techniques are related to those of Wheeler [11], who 
maintains that they extend to the general 2mth-order problem.) 

4.3. Hyperbolic Problems SH,tO and SH. Once again, using separation of vari- 
ables, we find that 

SH,tof = z 
- cos( f/ to) (f, z)zj Vf E ftr(0) 

j=1 

We first consider the problem SH,to. Let 

Pi= 1 - cos( /3jto), 

and let 
Ai pi-i(r+2m)/(2m) 

Let 
Ai, 

be the jth largest value in the set { Ai }90 
1, 

i.e., Ai, > Ai2 > * > 0. Using 
(2.2) and Lemma 3.1, we have 

THEOREM 4.3. (i) The nth minimal radius of information for the hyperbolic 
problem SH,to at time to is 

r(n, SH,to) = Ain+1 

so that 
r(n, SH,to) = 0(n-(r+2m)/N) as n -x oc. 
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(ii) The information Nn given by 

[(fI zil) 
Nnf= j Vf Hr (Q) 

[(fIZin ) 

is nth optimal information for the hyperbolic problem SH,tO. 

(iii) The algorithm (Pn given by 

p(N( f) Z (Vtj (f, Zij)Zj Vf E ftr () 
j=1 

is an nth minimal-error algorithm for the hyperbolic problem SH,tO. D 

The result for this problem is not as satisfying as those for the previous problems. 
There are two reasons why this is so. First, the nth optimal information and the 
nth minimal-error algorithm depend strongly on the ordering of the Aj, which in 
turn depends strongly (and chaotically) on the value of to. Hence, a slight change 
in to can greatly change the minimal-error algorithm for the problem SH,to. 

A second reason why this result is less satisfying is that we only have an up- 
per bound of O(n-(r+2m)/N) for the nth minimal radius for the problem SH,tO, 
whereas we had upper and lower bounds of e(n-(r+2m)/N) for the other proh 
lems. We would like to change this O-estimate to a e-estimate for the problem 
SH,to. Unfortunately, this is not possible. The O-estimate is (roughly speaking) 
the strongest result that we can obtain, since a fortuitous value of to can yield zero 
error for the zero algorithm p 0, as in 

Example 4.1. Let N = 1, Q = (0, 7r), m = 1, and Lv = -v". Then 

2T. 
Zn(x) =VXsinnx 

is the nth orthonormal eigenfunction of L corresponding to the eigenvalue On = n2. 
Hence 

SH,tof 
= E 1cos(jtO) (fz)z 

j=1 

Suppose that T > 27r. Then, setting to = 27r, we see that cos(jto) = 1 for any 
integer j, and so SH,2r is identically zero. Hence, the zero algorithm has zero error 
when to = 27r. 0l 

To avoid these difficulties, it is more natural to consider the problem SH instead 
of the problem SH,tO. (This was really the reason we considered the time-dependent 
problems over a time interval, as well as at a fixed time.) Using (2.2), Lemma 3.1, 
and the techniques of [9, pp. 59-60], it is easy to establish 

THEOREM 4.4. (i) The nth minimal radius of information for the hyperbolic 
problem SH over the interval [0, T] is 

r(n, SH) = -(r+2m)/(2m) 

so that 
r(n, SH) = e(n-(r+2m)/N) as n -* ox. 

(ii) The information Nn given by (4.1) is nth optimal information for the hyper- 
bolic problem SH. 
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(iii) Let 

E 
-(CNftO)t)(f, zj)zj V (f,t) E HT(7) x [0,T]. 

j=j j 

Then (Pn is an nth minimal-error algorithm for the hyperbolic problem SH. ? 
As before, the algorithm given by this theorem may be difficult to implement. 

Again, it turns out that there is a finite element method that is (to within a con- 
stant) an minimal-error algorithm for the problem SH. 

4.4. Summary. We may summarize the results of this section in 

THEOREM 4.5. If S is any one of SE, Sp,to, Sp, or SH, then 

r(n, S) = e(n-(r+2m)/N) as n -* oo, 

whereas 
r(n, SH,to) = 0(n-(r+2m)/N) as n - 0. EO 

5. Complexity of Related Problems. In this section, we show that the E- 
complexity of the problems SE, Sp,t0, Sp, and SH is e(3e-N/(r+2m)) as E -* 0, 
wnile the e-complexity of the problem SH,to is Q(e N/(r+2m)). 

We use the model of computation of [9, Chapter 5]. Informally, this means that 
linear functionals can be computed in finite time and that the cost of an arithmetic 
operation is unity. For E > 0, the E-complexity of a problem S is then defined to be 

comp(e, S) = inf{cost(p, N): e(op, N, S) < E }, 
where cost(p, N) is the cost (under this model of computation) of the algorithm W 
using information N. 

Remark 5.1. Note the difference between cost(p, N) and comp(e, S). The former 
is the cost of a specific algorithm, whereas the latter is the minimal cost among 
all algorithms that solve the problem to within E. This means that problem com- 
plexity is independent of any particular algorithm, and is thus an invariant of the 
problem. El 

Using the results of Section 4 along with those of [9, Chapter 5], we find 

THEOREM 5.1. If S is one of SE, Sp,t0, Sp, or SH, then 

1 N/(r+2m)\ 
comp(e,S) =e (()N) as E - 0, 

whereas 
1\N/(r+2m)\ 

comp(E, SH,to) =0 ( ()N) as E - 0. 

So, the problems SE, Sp,tO, Sp, and SH all have the same complexity, which is 
no better than the complexity of the problem SH,to. 

6. Summary, Extensions, and Open Questions. We have shown that it is 
not generally true that parabolic problems are significantly easier than elliptic prob- 
lems, and that elliptic problems are significantly easier than hyperbolic problems. 
We have shown a stronger result, namely that certain related elliptic problems, 
parabolic problems, and hyperbolic problems solved over a time interval all have 
the same complexity, while the complexity of hyperbolic problems solved out to a 
particular time is not greater than that of the other problems. 
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This leads one to ask whether the result on the complexity of partial differential 
equations noted in [9] is an isolated result, or an example of a more general situation. 
We feel that the latter may be true. Indeed, consider the parabolic problem 

9tu+Lu=0 in Qx(0,T), 
d 0u on O9 x [0,T] (O < j < m-1), 

u(,0)=f inQ, 

solved out to time t = to, the class of problem elements once again being the unit 
ball of HTr (Q). The nth minimal error for this new problem is 

E) e- (n+ 1)2m/NtOn T/N) as n - oo 

and the e-complexity is 

t/ lN/2mA 
E In!) ) as E 0. 

(Note that changing the way the data is used from a forcing term to initial data 
drastically altered the complexity. We have also observed this for hyperbolic proW 
lems.) Unfortunately, we have not succeeded in generalizing the results of [9] to 
related elliptic and hyperbolic problems. 

Finally, note that we required that the data belong to HTr () for technical rea- 
sons. However, it is more usual to assume that the data is in Hr(Q2) (i.e., to not 
require the data to satisfy any boundary conditions), especially for elliptic problems 
(see, e.g., [8, Theorem 8.5] and the results of [10]). Do the results of this paper still 
hold when the data is in Hr(Q) instead of Ht(r)? 
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